

Applications

- 1. 12 cm
- 2. a. The 12th triangle has leg lengths 1 unit and $\sqrt{12}$ units and hypotenuse length $\sqrt{13}$ units. The 13th triangle has leg lengths 1 unit and $\sqrt{13}$ units and hypotenuse length $\sqrt{14}$ units. The 14th triangle has leg lengths 1 unit and $\sqrt{14}$ units and hypotenuse length $\sqrt{15}$ units.
 - **b.** $\frac{1}{2}$ units², $\frac{1}{2}\sqrt{2}$ units², $\frac{1}{2}\sqrt{3}$ units²,

 $\frac{1}{2}\sqrt{4}$ units², $\frac{1}{2}\sqrt{5}$ units². The number

under the square root sign increases by 1 for every new triangle. Or, the area of the *n*th triangle is $\frac{1}{2}\sqrt{n}$.

- **c.** 5 is the square root of 25. So, the hypotenuse length of the 24th triangle is 5 units.
- **3.** $\frac{5}{8} = 0.625$; terminating

4.
$$\frac{3}{5} = 0.6$$
; terminating

- **5.** $\frac{1}{6} = 0.1666$...; 6 repeats
- **6.** $\frac{4}{99} = 0.04040404$...; 0.4 repeats
- 7. $\frac{43}{10} = 4.3$; terminating
- 8. Possible answer: $\frac{1,875}{10,000}$, or $\frac{3}{16}$
- 9. Possible answer: $5\frac{1}{8}$
- **10.** Possible answer: $43\frac{6}{10}$

11. a.
$$\frac{1}{99} = 0.010101 \dots, \frac{2}{99} = 0.020202 \dots,$$

 $\frac{3}{99} = 0.030303 \dots$ A fraction with

a denominator of 99 is equal to a repeating decimal. For numerators less than 99, the repeating part has two digits: either a 0 followed by the number in the numerator if that number

is less than 10 or the number in the numerator if that number is greater than 10.

b. $\frac{51}{99} = 0.51515151 \dots$

12. a.
$$\frac{1}{999} = 0.001001001 \dots$$
,

 $0.002002002 \dots, \frac{3}{999} =$

0.003003003 ... A fraction with a denominator of 999 is equal to a repeating decimal. For numerators less

 $\frac{2}{999} =$

than 999, the repeating part has three digits: two 0s followed by the number in the numerator if that number is less than 10; one 0 followed by the number in the numerator if that number is greater than 10 and less than 100; or the number in the numerator if that number is greater than 100.

b.
$$\frac{1,000}{999} = 1.001001 \dots$$

13. $\frac{1}{3}$ **14.** $\frac{5}{99}$

15. $\frac{45}{99}$, or $\frac{5}{11}$ **16.** $\frac{45}{999}$, or $\frac{15}{333}$

17.
$$10\frac{12}{99}$$
, or $\frac{334}{33}$ **18.** $3\frac{9}{9}$, or

- **19.** There is an infinite number of answers. Possible answers: The decimal is between $\frac{1}{10}$ and $\frac{2}{10}$, between $\frac{10}{100}$ and $\frac{11}{100}$, and between $\frac{101}{1,000}$ and $\frac{102}{1,000}$.
- **20.** There is an infinite number of answers. Possible answer: One decimal answer is 6.303003000300003 ...
- **21.** A possible solution from converting fractions to decimals: 0.150500500050005...

The following is a possible solution method considering fractions. Since

 $\left(\frac{1}{7}\right)^2 = \frac{1}{49}$ and $\left(\frac{1}{6}\right)^2 = \frac{1}{36}$, the square root

of any number between $\frac{1}{49}$ and $\frac{1}{36}$ will be

an irrational number between $\frac{1}{7}$ and $\frac{1}{6}$: for

example, $\sqrt{\frac{1}{43}}$ or $\sqrt{0.025}$.

- 22. The bottom has sides of length 3 cm and 4 cm. Because $3^2 + 4^2 = 25$, the diagonal of the bottom has length $\sqrt{25}$ cm, or 5 cm. Using this as a leg of a right triangle with hypotenuse *d*, $d^2 = 5^2 + 12^2 = 169$, so $d = \sqrt{169} = 13$. The length of diagonal d = 13 cm.
- **23.** The bottom has sides of length 6 cm and 7 cm. Because $6^2 + 7^2 = 85$, the diagonal of the bottom has length $\sqrt{85}$ cm. Using this as a leg of a right triangle with hypotenuse *d*, $d^2 = (\sqrt{85})^2 + (\sqrt{111})^2 =$

85 + 111 = 196, so $d = \sqrt{196} = 14$. The length of diagonal d = 14 cm.

Answers | Investigation 4

Connections

24. B

- **25.** 6 and 7. $6^2 = 36$ and $7^2 = 49$. Because 39 is between 36 and 49, $\sqrt{39}$ is between 6 and 7.
- **26.** 24 and 25. $24^2 = 576$ and $25^2 = 625$. Because 600 is between 576 and 625, $\sqrt{600}$ is between 24 and 25.
- **27.** False. 0.06 0.06 = 0.0036
- **28.** True. 1.1•1.1=1.21
- **29.** False. 20 20 = 400
- **30.** Right triangle; $5^2 + 7^2 = (\sqrt{74})^2$
- **31.** Not a right triangle; $(\sqrt{2})^2 + (\sqrt{3})^2$ is not equal to 3^2 .
- 32. 11; rational
- 33. 0.7; rational

Extensions.....

- **38.** $12^2 (\pi \times 6^2) \approx 30.9$ square units
- **39.** $4 \times [6^2 (\pi \times 3^2)] \approx 30.9$ square units
- **40.** $9 \times \left\lceil 4^2 (\pi \times 2^2) \right\rceil \approx 30.9$ square units
- **41. a.** 4. Using the commutative and associative properties, you can rewrite the equation as $(\sqrt{2})(\sqrt{2})(2) = (2)(2) = 4$
 - **b.** $\sqrt{2}$. Because you can rewrite 2 as $\sqrt{2} \times \sqrt{2}$, then $2 \div \sqrt{2} = \sqrt{2}$.
 - c. 2. Using the Distributive Property, you can rewrite and simplify the expression as $\sqrt{2} \times 1 + \sqrt{2} \times \sqrt{2} \sqrt{2} = \sqrt{2} + 2 \sqrt{2} = 2$.
- **42. a.** Using the Pythagorean Theorem, the length of half the edge of the base is 3 units, so the edge length of the base is 6 units. Therefore, the base area is 36 units².

- **34.** approximately 3.9; irrational
- **35.** approximately 31.6; irrational
- **36. a.** Using the Pythagorean Theorem, $2^2 + h^2 = 29$, so the height *h* of the cone is 5 units.
 - **b.** The volume of the cylinder is $\pi(2)^2(5) = 20\pi$ units³. So, the volume of the cone is $\frac{20\pi}{3}$ units³.
- **37. a.** 72 units³. The volume of the cube is $6 \cdot 6 \cdot 6 = 216$ units³. The volume of the pyramid is $\frac{1}{3}$ of the cube's volume, or 72 units³.
 - **b.** $\frac{1}{3}x^3$. The cube has volume x^3 . The volume of this pyramid is one third the volume of the cube, so it is $\frac{1}{3}x^3$.
 - **b.** The surface is made up of 4 congruent triangles plus a base. Each triangle has area $(\frac{1}{2})(6)(4) = 12$ units². So the surface area is 36 + 4(12) = 84 units².
 - c. You can find the height of the pyramid from the right triangle with sides 3 units (half of the base edge) and 4 units (the slant height). You need to solve $3^2 + h^2 = 4^2$. *h* is $\sqrt{7}$ units, or about 2.65 units.
 - **d.** $(\frac{1}{3})(36)(2.65) = 31.8$ units³.
- **43. a.** 31.81 in.³. Because the diameter is 4.5 in., the radius is 2.25 in. The height is 6 in., so the volume is $\frac{1}{3}\pi(2.25)^{2}$ (6) ≈ 31.81 in.³.
 - **b.** $26\pi \text{ in.}^3$. $7^2 = r^2 + 6^2$, so $r^2 = \sqrt{13}$ in., or about 3.6 in. So the volume is $\frac{1}{3}\pi(\sqrt{13})^2(6) \approx 26\pi \text{ in.}^3$, or about 81.7 in.³.