## A

## Applications

1. 12 cm
2. a. The 12th triangle has leg lengths 1 unit and $\sqrt{12}$ units and hypotenuse length $\sqrt{13}$ units. The 13th triangle has leg lengths 1 unit and $\sqrt{13}$ units and hypotenuse length $\sqrt{14}$ units. The 14th triangle has leg lengths 1 unit and $\sqrt{14}$ units and hypotenuse length $\sqrt{15}$ units.
b. $\frac{1}{2}$ units $^{2}, \frac{1}{2} \sqrt{2}$ units $^{2}, \frac{1}{2} \sqrt{3}$ units $^{2}$, $\frac{1}{2} \sqrt{4}$ units $^{2}, \frac{1}{2} \sqrt{5}$ units $^{2}$. The number under the square root sign increases by 1 for every new triangle. Or, the area of the $n$th triangle is $\frac{1}{2} \sqrt{n}$.
c. 5 is the square root of 25 . So, the hypotenuse length of the 24th triangle is 5 units.
3. $\frac{5}{8}=0.625$; terminating
4. $\frac{3}{5}=0.6$; terminating
5. $\frac{1}{6}=0.1666 \ldots ; 6$ repeats
6. $\frac{4}{99}=0.04040404 \ldots ; 0.4$ repeats
7. $\frac{43}{10}=4.3$; terminating
8. Possible answer: $\frac{1,875}{10,000}$, or $\frac{3}{16}$
9. Possible answer: $5 \frac{1}{8}$
10. Possible answer: $43 \frac{6}{10}$
11. a. $\frac{1}{99}=0.010101 \ldots, \frac{2}{99}=0.020202 \ldots$, $\frac{3}{99}=0.030303 \ldots$ A fraction with a denominator of 99 is equal to a repeating decimal. For numerators less than 99, the repeating part has two digits: either a 0 followed by the number in the numerator if that number is less than 10 or the number in the numerator if that number is greater than 10.
b. $\frac{51}{99}=0.51515151 \ldots$
12. a. $\frac{1}{999}=0.001001001 \ldots, \frac{2}{999}=$
$0.002002002 \ldots, \frac{3}{999}=$
0.003003003 ... A fraction with a denominator of 999 is equal to a repeating decimal. For numerators less
than 999, the repeating part has three digits: two 0s followed by the number in the numerator if that number is less than 10; one 0 followed by the number in the numerator if that number is greater than 10 and less than 100; or the number in the numerator if that number is greater than 100.
b. $\frac{1,000}{999}=1.001001 \ldots$
13. $\frac{1}{3}$
14. $\frac{45}{99}$, or $\frac{5}{11}$
15. $10 \frac{12}{99}$, or $\frac{334}{33}$
16. $\frac{5}{99}$
17. There is an infinite number of answers. Possible answers: The decimal is between
$\frac{1}{10}$ and $\frac{2}{10}$, between $\frac{10}{100}$ and $\frac{11}{100}$, and between $\frac{101}{1,000}$ and $\frac{102}{1,000}$.
18. There is an infinite number of answers. Possible answer: One decimal answer is 6.303003000300003 ...
19. A possible solution from converting fractions to decimals: 0.1505005000500005...

The following is a possible solution method considering fractions. Since $\left(\frac{1}{7}\right)^{2}=\frac{1}{49}$ and $\left(\frac{1}{6}\right)^{2}=\frac{1}{36}$, the square root of any number between $\frac{1}{49}$ and $\frac{1}{36}$ will be an irrational number between $\frac{1}{7}$ and $\frac{1}{6}$ : for example, $\sqrt{\frac{1}{43}}$ or $\sqrt{0.025}$.
22. The bottom has sides of length 3 cm and 4 cm . Because $3^{2}+4^{2}=25$, the diagonal of the bottom has length $\sqrt{25} \mathrm{~cm}$, or 5 cm . Using this as a leg of a right triangle with hypotenuse $d, d^{2}=5^{2}+12^{2}=169$, so $d=\sqrt{169}=13$. The length of diagonal $d=13 \mathrm{~cm}$.
23. The bottom has sides of length 6 cm and 7 cm . Because $6^{2}+7^{2}=85$, the diagonal of the bottom has length $\sqrt{85} \mathrm{~cm}$. Using this as a leg of a right triangle with hypotenuse $d$, $d^{2}=(\sqrt{85})^{2}+(\sqrt{111})^{2}=$ $85+111=196$, so $d=\sqrt{196}=14$. The length of diagonal $d=14 \mathrm{~cm}$.

## Connections

24. B
25. 6 and $7.6^{2}=36$ and $7^{2}=49$. Because 39 is between 36 and $49, \sqrt{39}$ is between 6 and 7.
26. 24 and $25.24^{2}=576$ and $25^{2}=625$.

Because 600 is between 576 and 625, $\sqrt{600}$ is between 24 and 25.
27. False. $0.06 \cdot 0.06=0.0036$
28. True. $1.1 \cdot 1.1=1.21$
29. False. $20 \cdot 20=400$
30. Right triangle; $5^{2}+7^{2}=(\sqrt{74})^{2}$
31. Not a right triangle; $(\sqrt{2})^{2}+(\sqrt{3})^{2}$ is not equal to $3^{2}$.
32. 11; rational
33. 0.7; rational
34. approximately 3.9 ; irrational
35. approximately 31.6 ; irrational
36. a. Using the Pythagorean Theorem, $2^{2}+h^{2}=29$, so the height $h$ of the cone is 5 units.
b. The volume of the cylinder is $\pi(2)^{2}(5)=$ $20 \pi$ units $^{3}$. So, the volume of the cone is $\frac{20 \pi}{3}$ units $^{3}$.
37. a. 72 units $^{3}$. The volume of the cube is $6 \cdot 6 \cdot 6=216$ units $^{3}$. The volume of the pyramid is $\frac{1}{3}$ of the cube's volume, or 72 units ${ }^{3}$.
b. $\frac{1}{3} x^{3}$. The cube has volume $x^{3}$. The volume of this pyramid is one third the volume of the cube, so it is $\frac{1}{3} x^{3}$.

## Extensions

38. $12^{2}-\left(\pi \times 6^{2}\right) \approx 30.9$ square units
39. $4 \times\left[6^{2}-\left(\pi \times 3^{2}\right)\right] \approx 30.9$ square units
40. $9 \times\left[4^{2}-\left(\pi \times 2^{2}\right)\right] \approx 30.9$ square units
41. a. 4. Using the commutative and associative properties, you can rewrite the equation as $(\sqrt{2})(\sqrt{2})(2)=(2)(2)=4$
b. $\sqrt{2}$. Because you can rewrite 2 as $\sqrt{2} \times \sqrt{2}$, then $2 \div \sqrt{2}=\sqrt{2}$.
c. 2. Using the Distributive Property, you can rewrite and simplify the expression as $\sqrt{2} \times 1+\sqrt{2} \times \sqrt{2}-\sqrt{2}=$ $\sqrt{2}+2-\sqrt{2}=2$.
42. a. Using the Pythagorean Theorem, the length of half the edge of the base is 3 units, so the edge length of the base is 6 units. Therefore, the base area is 36 units $^{2}$.
b. The surface is made up of 4 congruent triangles plus a base. Each triangle has area $\left(\frac{1}{2}\right)(6)(4)=12$ units $^{2}$. So the surface area is $36+4(12)=84$ units $^{2}$.
c. You can find the height of the pyramid from the right triangle with sides 3 units (half of the base edge) and 4 units (the slant height). You need to solve $3^{2}+h^{2}=4^{2}$. $h$ is $\sqrt{7}$ units, or about 2.65 units.
d. $\left(\frac{1}{3}\right)(36)(2.65)=31.8$ units $^{3}$.
43. a. 31.81 in. ${ }^{3}$. Because the diameter is 4.5 in ., the radius is 2.25 in . The height is 6 in., so the volume is $\frac{1}{3} \pi(2.25)^{2}(6) \approx 31.81 \mathrm{in.}^{3}$.
b. $26 \pi$ in. $.^{3} .7^{2}=r^{2}+6^{2}$, so $r^{2}=\sqrt{13}$ in., or about 3.6 in . So the volume is $\frac{1}{3} \pi(\sqrt{13})^{2}(6) \approx 26 \pi$ in. $^{3}$, or about 81.7 in. ${ }^{3}$.
